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Abstract
We study how imperfect quantum gates affect the quantum random-walk
search algorithm. We find that systematic errors in phase inversions result
in the reduction of the maximum probability of the marked state and lower
the algorithm efficiency with an increasing degree of inaccuracy. The size
of the database should be limited due to the inevitable errors. Finally, we
compare the phase noise caused by such errors in the random-walk search
algorithm with that in the Grover search algorithm.

PACS numbers: 03.67.Lx, 89.70.+c

1. Introduction

It is well known that for certain computational tasks, quantum algorithms are more efficient
than classical ones. One such example is the Grover search algorithm [1], which has been
successfully demonstrated in CQED [2] and liquid NMR bulk quantum computers on several
qubits [3, 4]. The possibility of realizing such an algorithm with a coherent atomic system has
also been studied [5]. Another example is the quantum random-walk (QRW) search algorithm,
which has nearly the same speed as the Grover search algorithm. As the quantum counterpart
of classical random walk, the QRW has been well studied [9–15], and several algorithms based
on the QRW have been introduced in recent years [6–8].

Due to inevitable quantum state decoherence and gate inaccuracy, a variety of errors
may be introduced in the process of computation [16]. They will accumulate throughout the
computation and make long computation unreliable. Fortunately, studies of quantum error
correction show that in principle an arbitrarily long quantum computation can be performed
reliably if the average probability of error per quantum gate is less than a certain threshold
[17]. Recently, decoherence in the QRW has been considered [18, 19]. These studies show
that some properties of the QRW are highly sensitive to decoherent events, e.g. the quadratic
increase of the variance will be suppressed because of decoherence. It has also been noted that
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a small amount of decoherence can be tolerated by the QRW and can actually help some aspects
of the QRW’s performance. However, the mechanism of gate inaccuracy in the QRW acting
on the search algorithm is seldom studied. Different types of errors occur with different rates
and will affect the efficiencies of the algorithm differently. Therefore, a good understanding
of a variety of errors can help us implement the algorithm more efficiently.

In this paper we study how imperfect quantum gates affect the QRW search algorithm
presented in [6] without decoherence and error corrections. We assume that the Grover
diffusion operator used in the algorithm is not applied perfectly, i.e. there is a noise in phase
inversions. As is well known, any phase inversion operation is imperfect, so there is an
uncertainty. We study the effect of such phase noise and demonstrate how it acts on the result
of the search algorithm. The corresponding work of gate imperfection in the Grover search
algorithm has been studied [20, 21]. Nevertheless, our studies show notable differences, as
well as similarities, in the response of the two algorithms to noise.

The paper is organized as follows. Section 2 is a brief overview of the discrete-time
quantum random walk search algorithm. Section 3 gives a model of an imperfect quantum
gate in the above algorithm, and demonstrates the effect of such imperfection acting on the
algorithm. Section 4 shows the numerical calculations, and compares the phase noise in the
QRW search algorithm with that in the Grover search algorithm. Conclusions are presented
in section 5.

2. Random-walk search algorithm in the absence of noise

The discrete-time quantum random walk search algorithm is realized by repeatedly applying
a unitary evolution operator U ′ on a Hilbert space HC ⊗HS [6]. Here, HC is a n-dimensional
Hilbert space associated with a quantum coin, and HS is a 2n-dimensional Hilbert space
associated with the nodes of the graph. The operator U ′ is written as follows,

U ′ = SC, (1)

where S is a permutation matrix which performs a controlled shift based on the state of the
coin space. The operator S moves the walker from one state to another by flipping a single
qubit (e.g. |001101〉 to |011101〉), i.e. the walk composes a hypercube of dimension n. It can
be written in the form [6]

S =
n−1∑
d=0

∑
→
x

|d,
→
x ⊕ →

ed〉〈d,
→
x |. (2)

The operator C is a unitary matrix corresponding to flipping the quantum coin, and it can be
written as

C = C0 ⊗ In + (C1 − C0) ⊗ |→0 〉〈→0|. (3)

Here |→0 〉 is the marked state, C0 and C1 are n × n unitary operators acting on the coin space
HC . In order to achieve a search, different coins should be applied to different nodes. C0 is
the coin for unmarked node, and C1 is the coin for marked node.

A frequent choice of C0 is the Grover diffusion operator which is given by

C0 = −In + 2|sC〉〈sC |, (4)

where |sC〉 is the equal superposition over all n directions, i.e. |sC〉 = 1/
√

n
∑n

d=1 |d〉. The
coin C1 can be chosen, for simplicity, as C1 = −In. The initial state |ψ0〉 is supposed to be
the direct product of the superposition of all 2n-node and their n-directions. It can be written
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as follows:

|ψ0〉 = 1√
2n × n

(1, 1, . . . , 1)T .

With the above selections, we apply the operator U ′ to the initial state |ψ0〉 repeatedly. After
tf iterations where

tf = π
√

2n−1/2, (5)

we take a measurement, and the probability of finding the target state is about Psuccess =
1/2 − O (1/n).

3. Effect of gate imperfection in the algorithm

From the above section, we observe that the discrete-time QRW search algorithm essentially
consists of two steps in one iteration: (1) flipping the coin by using the operator C given in
equation (3); (2) applying a shift operation by using the operator S given in equation (2). In
this paper, we focus on the imperfections in the Grover diffusion operator (C0), and the other
operators, i.e. C1 and S, are assumed to be ideal. We start with introducing a noise in phase
inversions in the Grover diffusion operator. A similar model has been adopted in [20, 21] for
the Grover search algorithm. The operator C̃0 can be rewritten as

C̃0 = −In + (1 − eiθ )|sC〉〈sC |, (6)

where θ = π + δ, and δ is a small constant denoting the phase noise (assume that δ � 0). In
this paper, we will use primed quantities to denote the QRW search algorithm in the presence
of a marked node and a tilde to denote the QRW search algorithm in the presence of phase
noise. For instance, U is the evolution operator of a QRW with no marked node and no phase
noise while Ũ ′ is the evolution operator with a marked node and phase noise.

When δ = 0, we recover the ideal QRW search algorithm without noise. In such a case,
the initial state |ψ0〉 and the final state |ψ1〉 can be well approximated by linear combinations
of two eigenvectors of U ′, which can be written as

|ψ0〉 � 1√
2
(|ω′

0〉 + |−ω′
0〉), (7)

|ψ1〉 � 1

i
√

2
(|ω′

0〉 − |−ω′
0〉), (8)

where |ω′
0〉 and |−ω′

0〉 are the eigenvectors of U ′ whose eigenvalues are eiω′
0 and e−iω′

0

respectively. |ψ1〉 is the state in which there is a high probability of finding the marked

state |→0 〉. By applying U ′ repeatedly to the initial state |ψ0〉, we will approach |ψ1〉 after
approximately tf iterations. Since ω′

0 ≈ −1/(c
√

2n−1) [6], the optimal number of iterations,
tf , will be specified approximately by equation (5). However, if δ is nonzero, we will obtain
a different evolution operator Ũ ′. It might be difficult to approach the final state by applying
Ũ ′ to |ψ0〉 for several reasons:

(i) Due to the presence of the phase noise, the eigenvalues of Ũ ′ will change from e±iω′
0

to eiω̃′
0 and eiω̃′

1 . The corresponding eigenvectors, |ω̃′
0〉 and |ω̃′

1〉, are no longer complex
conjugates of one another because Ũ ′ is not real. Thus, the state |ψ0〉 cannot be converted
into |ψ1〉 after tf iterations.

(ii) The states |ψ0〉 and |ψ1〉 can no longer be written as linear combinations of |ω̃′
0〉 and |ω̃′

1〉
as equations (7) and (8). This is because the subspace spanned by |ψ ′

0〉 and |ψ ′
1〉 is not

the same as that spanned by |ω̃′
0〉 and |ω̃′

1〉.
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(iii) Even if |ψ0〉 and |ψ1〉 span the same subspace as |ω̃′
0〉 and |ω̃′

1〉 (when the noise is
sufficiently small), the linear coefficient may be different from equations (7) and (8).
Then it may be impossible to perform a complete rotation from |ψ0〉 to |ψ1〉.
Next we will examine the eigenvalues of Ũ ′. However, it is difficult to specify these

eigenvalues completely, because the coin used on the marked node is different from the others
in order to locate the target state. So we start with an unperturbed operator Ũ , i.e. the evolution
operator of a QRW with no marked node,

Ũ = SC̃, (9)

where S can be described by equation (2) and the operator C̃ is given as follows,

C̃ = C̃0 ⊗ In. (10)

In this case, every node on the hypercube is equivalent, and the coin space HC is separable from
the node space HS . Then the eigenstates of Ũ are simply the tensor product of the eigenstates
of an operator C
k on the coin space and the Fourier modes of the hypercube labelled by n-bit

strings
→
k = (k1, k2, . . . , kn). As in [22], we can obtain the non-trivial eigenvalues of Ũ ,

λ̃ =



−eiθ , k = 0
1
2 (1 − eiθ ) − (1 − eiθ ) k

n

∓ 1
2

√
(1 − eiθ )2 (n−k)2

n2 + 4 eiθ , k = 1, . . . , n − 1

eiθ , k = n

(11)

where θ = π + δ. Due to the phase noise δ, the operator Ũ is complex, and the eigenvalues
are no longer conjugated, but they still stay at the unit circle of the complex plane. The
corresponding non-trivial eigenvectors for a given k can be described as

|̃νk〉 = 1√
Q

(x, x, . . .︸ ︷︷ ︸
n−k

, y, y, . . .)︸ ︷︷ ︸
k

, (12)

where Q is a normalized coefficient, and x, y satisfy the following condition

x

y
=

(1 + eiθ ) ±
√

(1 − eiθ )2 (n−2k)2

n2 − 4(1 − eiθ ) + 4

2(1 − eiθ ) (n−k)

n

under k �= 0 and k �= n. Particularly, when k = 0, |̃νk〉 = |ψ0〉. There is a small deviation
between λ̃′ (i.e. eiω̃′

j , j = 0, 1, . . .), the eigenvalues of Ũ ′, and λ̃, the eigenvalues of Ũ . In
figure 1, we show the eigenvalue spectra of the unperturbed and perturbed matrices for n = 8
with the noise δ = 0.1. We stress that the eigenvalues λ̃′

0 and λ̃′
1 are not complex-conjugate

pairs, unless there is no noise. However, with the increasing of δ, numerical studies show that
these two eigenvalues will respectively approach −eiθ , and 1 gradually, where the former is
exactly the eigenvalue of Ũ for k = 0 corresponding to the initial state |ψ0〉.

From figure 1 we note that, when δ is small, λ̃′
0 and λ̃′

1 are still in the vicinity of 1. This
means Ũ ′ still has two nearly degenerate states whose eigenvalues are close to 1.

Since the presence of phase noise does not alter the symmetry of the system, we can
reduce the perturbed random walk on the hypercube to a walk on the line. Then the operator
Ũ ′ can be described as

Ũ ′ = Ũ − (1 − eiθ )|L, 1〉〈R, 0|, (13)
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Figure 1. The results of numerical spectral analysis of Ũ and Ũ ′ for n = 8 with the noise δ = 0.1.
The circles indicate eigenvalues of Ũ while the stars indicate eigenvalues of Ũ ′.

where Ũ is redefined as

Ũ =
n−1∑
x=0

|R, x〉
{[

1 − eiθ

n

√
(x + 1)(n − x − 1)

]
〈R, x + 1|

+

[
−1 +

1 − eiθ

n
(x + 1)

]
〈L, x + 1|

}
+

n∑
x=1

|L, x〉
{[

−eiθ − 1 − eiθ

n
(x − 1)

]
〈R, x − 1|

+

[
1 − eiθ

n

√
(x − 1)(n − x + 1)

]
〈L, x − 1|

}
.

The initial state |ψ0〉 and the final state |ψ1〉 then can be written as [6]

|ψ0〉 = 1√
2n

|R, 0〉 +
1√
2n

|L, n〉 +
n−1∑
x=1


√(

n−1
x−1

)
2n

|L, x〉 +

√(
n−1
x

)
2n

|R, x〉
 (14)

|ψ1〉 = 1

c

n/2−1∑
x=0

(√
1

2
(

n−1
x

) |R, x〉 −
√

1

2
(

n−1
x

) |L, x + 1〉
)

(15)

where c is a constant which approximately equals 1,

c =
√√√√n/2−1∑

x=0

1(
n−1
x

) .
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Expanding equation (11) to the second order with respect to δ (since δ  1) and using
the method presented in [6], one can prove that Ũ ′ has at most two eigenvalues with their real
part greater than 1 − L, where

L = 2

3n
−

√
n − 1

3n
δ −

(
1

6n
− 1

12

)
δ2. (16)

Using equations (13)–(15), one obtains

〈ψ0|Ũ ′|ψ0〉 = eiδ − (1 + eiδ)

2n
, (17)

〈ψ1|Ũ ′|ψ1〉 = 1 − (1 + eiδ)

4c2
(

n−1
n/2

) . (18)

From equations (17) and (18), we note that, apart from a small residual, |ψ0〉 is ‘almost’
an eigenvector of Ũ ′ with eigenvalue eiδ , and |ψ1〉 is also ‘almost’ an eigenvector of Ũ ′

with eigenvalue 1. We obtain that, when δ2 ∼ 4/2n, the rhs of equations (17) and (18) are
both close (but not equal) to 1, and hence |ψ0〉 and |ψ1〉 are nearly degenerate. Then the
search algorithm can work normally. A similar result has also been found in the Grover search
algorithm in the presence of constant phase noise [20], which suggests that there is a threshold
of δ ∼ 1/

√
N for systematic errors.

We can expand |ψ0〉 and |ψ1〉 with two eigenvectors of Ũ ′, |ω̃′
0〉 and |ω̃′

1〉, whose
eigenvalues are eiω̃′

0 and eiω̃′
1 . The expansions read

|ψ0〉 = C00|ω̃′
0〉 + C01|ω̃′

1〉 +
√

1 − |C00|2 − |C01|2|γ0〉,
|ψ1〉 = C10|ω̃′

0〉 + C11|ω̃′
1〉 +

√
1 − |C10|2 − |C11|2|γ1〉,

(19)

where C00, C01, C10 and C11 are four complex coefficients, and they are the functions of n and
δ. |γ0〉 and |γ1〉 are two normalized vectors orthogonal to |ω̃′

0〉 and |ω̃′
1〉. From equations (17)–

(19), we obtain

(1 − ε1) ≡ |C00|2 + |C01|2 > 1 − 1

L

(
4 − δ2

2n+1
+

δ2

2

)
, (20)

(1 − ε2) ≡ |C10|2 + |C11|2 > 1 − 1

L

(
4 − δ2

8c2
(

n−1
n/2

))
. (21)

With the above results, we are able to describe the overall operation of the algorithm.
Starting with the initial state |ψ0〉, by using equation (19), we can obtain

(Ũ ′)t |ψ0〉 = C00 eiω̃′
0t |ω̃′

0〉 + C01 eiω̃′
1t |ω̃′

1〉 +
√

ε1

∣∣γ t
0

〉
= P1|ψ0〉 − P2|ψ1〉 − P1

√
ε1|γ0〉 + P2

√
ε2|γ1〉 +

√
ε1

∣∣γ t
0

〉
, (22)

where
∣∣γ t

0

〉 ≡ (Ũ ′)t |γ0〉, and

P1 = C00C11 eiω̃′
0t − C01C10 eiω̃′

1t

C00C11 − C01C10
, P2 = C00C01(eiω̃′

0t − eiω̃′
1t )

C00C11 − C01C10
. (23)

When δ → 0, the evolution operator Ũ ′ is real, and we obtain ε1, ε2 ≈ 0. When t = tf , P1,

P2 → 0, 1, and there will be a high probability of obtaining the state |ψ1〉. However, when
δ �= 0, P2 could not reach its maximum

(
P max

2

)
after tf iterations, and P max

2 will be much
smaller than 1. Since the state |ψ1〉 contains a contribution of nearly 1/2 from the target
state, whether the search algorithm is reliable will depend on whether the operator Ũ ′ rotates
the initial state |ψ0〉 to the state |ψ1〉. This will finally depend on eiω̃′

0 , eiω̃′
1 , and the four

coefficients, C00, C01, C10 and C11.
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Figure 2. The probability of finding the marked state versus the times of iterations when n = 8.
Solid line for δ = 0, and dashed line for δ = 0.2.

4. Numerical simulations

In this section, we will give numerical studies of the QRW search algorithm with phase noise.
As we have discussed, if there is phase noise, the probability of finding the marked state will
not be able to reach its maximum after tf iterations. Therefore, the peak of the probability
will shift. In figure 2, we compare a case without phase noise (n = 8 and δ = 0) and a case
in the presence of noise (δ = 0.2). We observe that the probability reaches its peak after 18
iterations for δ = 0, and 12 iterations for δ = 0.2. Thus, due to the presence of the phase
noise, the probability of finding the marked state will reach its maximum faster. However, this
does not mean that the noisy case is more efficient than the noiseless one, because a drop also
occurs in the maximum probability. The above result can also be obtained by equation (23).
When n = 8 and δ = 0.2, we obtain the eigenvalues eiω̃′

0 = 0.9739 + 0.2268i and
eiω̃′

1 = 0.9996 + 0.0228i by numerical calculations, and find |P2| reaches its maximum at
t = 12.

The relationship between the number of iterations needed to reach the maximum
probability of the marked state and the size of the database is shown in figure 3. Here
we assume that the errors in the phase inversions are systematic, i.e. δ is constant in each step
(model I). The curve of tmax has a transition point at about ncr � 2(1 − log2 δ). An obvious
shift can be observed when n > ncr. The curve mostly fits for the following formula,

tmax = π√
8/N + δ2

, (24)

where N = 2n is the size of database. Next we study the relationship between the maximum
success rate and the size of the database for model I. We vary n = log2 N and run the algorithm
with a sufficient number of iterations so that a maximum probability is found. Our numerical
results show that the phase noise results in a reduction in the maximum probability of finding
the marked state, as shown in figure 4. When n is large, the probability decreases exponentially.
This result shows that, due to the phase error, the database size cannot be unlimited. From the
figure, we note that there is still a transition point in each curve which is determined by the
error parameter δ. The curve of the probability mostly fits for the following form,

Pmax = 8P0

8 + δ2N
, (25)
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Figure 3. The number of iterations required to reach the maximum probability versus n = log2N

for model I, where only systematic errors in the phase inversions are counted. Diamonds are used
for δ = 0.01, asterisks for δ = 0.001, and circles for δ = 0.0001. The dotted, dashed and solid
curves fitting for the numerical data are obtained by equation (24).
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Figure 4. The maximum probability of finding the marked state versus n = log2N for model I.
Diamonds are used for δ = 0.01, asterisks for δ = 0.001 and circles for δ = 0.0001. The dotted,
dashed and solid curves fitting for the numerical data are obtained by equation (25).

where P0 is the probability of finding the marked state in the noiseless case. Equation (25)
shows, if N → ∞, the QRW search algorithm is available only when δ = 0. Equations (24)
and (25) provide analogies between the QRW search algorithm and the Grover search
algorithm, both of which show the algorithmic success probability dropped dramatically
under the condition δ > 1/

√
N in the presence of systematic errors [20].

In experiments, there are systematic errors as well as random errors, and we cannot
estimate them precisely. One may still run the algorithm for tf iterations when the Grover
diffusion operator is used. However, the probability of finding the target state will not reach
its maximum when a measurement is taken at tf . We study the variation of the probability
with increasing of noise under the condition t = tf (where tf is defined in equation (5)). We
simulate the case of n = 6, 7, 8, i.e. the size of database is N = 64, 128, 256 for the model I
(as shown in figure 5) and another two error models (as shown in figures 6 and 7). The second
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Figure 5. Upper three traces, the probability of finding the marked state versus δ for model I,
where only systematic errors are counted. Lower three traces, the highest probability of the rest
states versus δ with the same legend.
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Figure 6. The probability of finding the marked state versus the standard deviation s for model II,
where only random errors are counted. The mean of the noise δ0 = 0.

error model assumes that δ in each step is a Gaussian random variable with mean δ0 = 0 and
standard deviation s (model II). It is conventionally defined as random error. Finally, we let δ

be a Gaussian random variable with mean δ0 �= 0 and standard deviation s (model III). Each
curve in figures 6 and 7 is the average over 200 simulations for each point because of the
randomness of the phase errors. Figures 5 and 6 show that the systematic errors play a more
significant role than the random errors. The numerical results also show that the mean success
rate for model II ∼ O(1/s2

√
N) (when N � 1), which confirms the analysis of [20] and [21]

regarding the success rate with random errors in the Grover search algorithm. The probability
in figure 7 is nearly identical to that in figure 5 except for some small fluctuations. The reason
is that the effects of random errors will counteract each other during the application of operator
Ũ ′ while the effects of the systematic errors will accumulate.

Next we study the gap which is defined as the distance between the probability of the
target state and the highest probability of the rest states. Although the probability of the target
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Figure 7. The probability of finding the marked state versus noise for model III, where both
random and systematic errors are counted. s = 0.1, δ0 = 0, . . . , 0.25.

state is useful, the ability to distinguish the target state from others is also important. In
relevant experiments such as NMR, the final state is not determined directly. An equivalent
measurement, so-called quantum state tomography [15], is made to recover the density matrix
ρ(t) = |ψ1(t)〉〈ψ1(t)|. The diagonal elements of the final density operator are obtained and
the off-diagonal elements can be cancelled by applying gradient pulse before readout pulse
when we use heteronuclear systems. After repeating the algorithm around tf times, one may
find that the probability of finding the target state is much higher than others. This means, if
the gap is large enough, we may say that the search is still successful in view of experiment.
When n = 8, the gap decreases from 0.3745 to 0.0083 as δ varies from 0 to 0.25 (as shown
in figure 5), while the marked state probability decreases from 0.4345 to 0.0141. The gap
decreases slower than the probability of finding the target state.

Finally, we draw a comparison between the QRW search algorithm and the Grover
search algorithm. The maximum probabilities in both algorithms drop exponentially with the
increasing size of database in response to the systematic errors, while the random errors do
not affect the algorithm as significantly as the systematic errors. In [20, 21], it was shown
that there is a threshold of δ ∼ 1/N1/2 for systematic errors and s ∼ 1/N1/4 for random
errors. In our simulations results, the QRW search algorithm exhibits a similar behaviour as
the Grover search algorithm. However, as presented in [6], the coin operator in the QRW acts
only on the n-dimensional coin space, and all our operations in an iteration are n local. So the
errors introduced in the Grover diffusion operator affect these two algorithms differently. One
example is that the phase noise in the Grover search algorithm, as shown in [20], will make
the probabilities of all unmarked states rise and the probability of the marked state decrease.
However, in the QRW search algorithm, only the probabilities of the nodes which are not
adjacent to the marked node will rise, while those of the marked node and adjacent nodes will
decrease. This is why figures 5–7 show that the highest probability on the unmarked nodes
will also decrease with increasing error.

5. Conclusions

In this paper, we have studied how imperfect quantum gates affect the QRW search algorithm.
Our model assumed that there is a phase noise in the Grover diffusion operator. We find, from
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our analysis, that such a noise will not only reduce the maximum probability of finding the
marked state, but also shift the peak position, which has also been shown in our numerical
results. The maximum probability of the target state relies on the size of database and the
errors as revealed in equation (25). Numerical studies also indicate that random errors in the
phase inversion do not affect the algorithm as seriously as the systematic errors. Thus, in
practice more attention should be paid to reduce the systematic errors.

However, the phase errors still occur inevitably due to imperfection in experiments.
For instance, systematic errors arise from inhomogeneity in radio frequency pulses in NMR
realizations. And random errors may originate from fluctuations of the laser intensities and
detunings in EIT realizations [23]. These errors will affect the reliability of the algorithm.
It is necessary to make an estimate of the combined effect of systematic errors and random
errors and set an upper bound for the size of a quantum database to ensure the success rate.

As a final comment, we point out that unlike the Grover search algorithm, the phase noise
in the Grover diffusion operator in the QRW search algorithm does not make the probabilities
on all unmarked nodes rise. It is not clear whether other coins or kinds of noises will have the
same properties. This might be a valuable direction for future works.
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